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ABSTRACT

A continuous-update-cycle storm-scale ensemble data assimilation (DA) and prediction system using the

ARW model and DART software is used to generate retrospective 0–6-h ensemble forecasts of the 31 May

2013 tornado and flash flood event over central Oklahoma, with a focus on the prediction of heavy rainfall.

Results indicate that themodel-predicted probabilities of strong low-levelmesocyclones correspondwell with

the locations of observed mesocyclones and with the observed damage track. The ensemble-mean quanti-

tative precipitation forecast (QPF) from the radar DA experiments match NCEP’s stage IV analyses rea-

sonably well in terms of location and amount of rainfall, particularly during the 0–3-h forecast period. In

contrast, significant displacement errors and lower rainfall totals are evident in a control experiment that

withholds radar data during the DA. The ensemble-derived probabilistic QPF (PQPF) from the radar DA

experiment is more skillful than the PQPF from the no_radar experiment, based on visual inspection and

probabilistic verification metrics. A novel object-based storm-tracking algorithm provides additional insight,

suggesting that explicit assimilation and 1–2-h prediction of the dominant supercell is remarkably skillful in

the radar experiment. The skill in both experiments is substantially higher during the 0–3-h forecast period

than in the 3–6-h period. Furthermore, the difference in skill between the two forecasts decreases sharply

during the latter period, indicating that the impact of radarDA is greatest during early forecast hours.Overall,

the results demonstrate the potential for a frequently updated, high-resolution ensemble system to extend

probabilistic low-level mesocyclone and flash flood forecast lead times and improve accuracy of convective

precipitation nowcasting.

1. Introduction

The vision for the National Oceanic and Atmospheric

Administration (NOAA) Warn-on-Forecast (WoF;

Stensrud et al. 2009) research and development project

is to provide probabilistic guidance derived from storm-

resolving numerical weather prediction (NWP) models

to NOAA’s National Weather Service (NWS) fore-

casters to aid in their issuance of warnings for severe and

hazardous convective weather (Stensrud et al. 2013).

Severe weather is particularly dangerous when there are

multiple weather threats (i.e., tornadoes, hailstorms,

damaging windstorms, and flash floods), with perhaps

the most deadly combination involving both tornadoes

and flash floods since the lifesaving actions for these two

hazards are contradictory (Nielsen et al. 2015). To pro-

vide probabilistic guidance regarding the evolution of

these types of complex multiple severe weather threats,

it is essential to develop a convective-scale, ensemble-

based data assimilation and probabilistic forecast system

that continuously assimilates Doppler radar and other

available observations of ongoing convection into the

NWP models (Stensrud et al. 2009, 2013). The goal of

this study is to demonstrate the capability of aWoF-type

system [i.e., a storm-scale ensemble Kalman filter
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(EnKF) based frequently updated data assimilation and

forecast system] to handle multiple-weather-threat sce-

narios over the same area (i.e., both tornado and flash

flood hazards).

Several recent studies have examined the ability of

a WoF-type system to assimilate observed tornadic

supercell storms and provide 0–1-h probabilistic nu-

merical forecasts of strong low-level vertical vorticity

and/or updraft helicity (both of which have been used

as a proxy for tornadoes in convection-allowingmodels),

and the results obtained are very encouraging (Dawson

et al. 2012; Yussouf et al. 2013a,b, 2015; Potvin and

Wicker 2013; Wheatley et al. 2015). For example,

Yussouf et al. (2013b, 2015) illustrated that a WoF-type

system was able to assimilate strong supercells and

predict intense low-level mesocyclone tracks that align

well with the locations of radar-derived rotation tracks

associated with observed tornadic storms.

The success of these studies in demonstrating the

potential of the analysis and forecast systems to provide

useful 0–1-h guidance for predicting tornadoes suggests

that this type of system also holds promise in providing

guidance for the prediction of other high-impact severe

convective weather events like extreme rainfall, high

winds, and hailstorms (Stensrud et al. 2013). Application

for extreme rainfall associated with severe storms is

particularly intriguing because intense rainfall over a

short amount of time can lead to flash flooding (Ashley

and Ashley 2008), which, on average, causes more fa-

talities per year than either tornadoes or hurricanes

(Barthold et al. 2015). The average storm-based flash

flood warning lead time over the past ;10 years is

approximately 1 h (https://verification.nws.noaa.gov).

There have been significant advances in recent years in

the use of hydrologic models to predict flash floods

(Chen et al. 2013; Barthold et al. 2015 and references

therein). However, these models are generally most

skillful when they are initialized with observed pre-

cipitation totals [i.e., quantitative precipitation esti-

mates (QPEs)], rather than quantitative precipitation

forecasts (QPFs) from models because the forecasts

tend to have errors in placement, amplitude, and timing

that can be very detrimental to accurate flash flood

prediction with hydrologic models. In spite of these er-

rors, QPF fields have one large advantage over QPEs:

they can be generated before a heavy rain event occurs.

The challenge is to develop QPF and probabilistic QPF

(PQPF) systems that are sufficiently accurate to provide

useful input to hydrologic models and timely enough to

allow these models to be initialized well before QPEs

are available. When this challenge is met, hydrologic

models can provide flash flood guidance to forecasters

earlier than with the QPE-based paradigm, providing

forecasters with the tools to issue flash flood warnings

with longer lead times and no loss in accuracy compared

to current warnings.

QPF systems have improved over the last decade, due

largely to the increasing availability of QPFs derived

from convection-allowing models (CAMs) that are ini-

tialized by downscaling coarser-resolution operational

NWPmodels (e.g., Kain et al. 2006, 2010;Weisman et al.

2008; Clark et al. 2009, 2010; Schwartz et al. 2009; Chang

et al. 2012; Duc et al. 2013; Tang et al. 2013; Gagne et al.

2014). Further advances in QPFs and PQPFs have come

from downscaling experimental mesoscale EnKF data

assimilation systems (e.g., Jones and Stensrud 2012;

Schumacher and Clark 2014; Romine et al. 2013;

Schwartz and Liu 2014; Schwartz et al. 2014, 2015).

However, when convection-allowing NWP models are

initialized by downscaling from coarser-resolution ana-

lyses, it takes as long as 3–6 h for deep-convective pro-

cesses to spin up and, when storms do develop, they

often emerge with the previously mentioned errors in

timing, amplitude, and placement, leaving little value in

the short-term model guidance for driving hydrologic

models. Thus, the downscaling approach is likely to have

limited value for flash-flood warnings.

A recent study (Sun et al. 2014) reviewed the current

progress and challenges of nowcasting (0–6 h) convec-

tive precipitation and illustrated that the assimilation of

radar observations into high-resolution NWP models

using a rapid-update-cycle strategy is essential for ac-

curate numerical nowcasting of rainfall. The continuous

assimilation of radar data and other routinely available

conventional observations into the storm-scale model is

needed to overcome the inherent model spinup issues

during the first few hours into the forecasts (Sun et al.

2014 and references therein). This fundamental ap-

proach is also being used as part of the WoF effort.

Therefore, in addition to focusing on improving the ac-

curacy and forecast lead times for tornado-producing

thunderstorms, it is important to test the applicability

and robustness of the same WoF type system for other

high-impact weather events like heavy rainfall and flash-

flood-producing thunderstorms.

One hazardous convective weather outbreak in recent

years that not only produced violent tornadoes but also

caused heavy rainfall and flash flooding is the central

Oklahoma event of 31 May 2013. Almost two-thirds of

the total 22 fatalities on that day were due to flash

flooding. While the violent tornado in El Reno, Okla-

homa, garnered most of the media attention that even-

ing, the back-building slow-moving convective system

associated with the tornadic storm produced heavy

rainfall over the area in the hours following the torna-

does. This type of event is particularly complicated from
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the safety perspective since the recommended shelters

for tornados and flash floods are often contradictory, for

example, below ground if possible for violent tornadoes

versus high ground for flash floods (Nielsen et al. 2015).

Yussouf et al. (2015) demonstrates the capability of

the emerging WoF-type frequently updated system in

predicting the;1-h probabilistic forecasts of reflectivity

and the mid- and low-level rotational characteristics of a

severe tornado outbreak event. In this study, we investi-

gate the utility of the sameWoF-type system in predicting

both the low-level mesocyclone associated with the tor-

nadic storm and the heavy rainfall that follows from the

31 May 2013 event. Recognizing that there is rapid

error growth at storm scale, we nonetheless extend the

forecast length out to 6 h to evaluate whether the sys-

tem can be used for nowcasting out this far. The ob-

jective is to examine the quality of the analyses and

very short-range ensemble probabilistic forecasts of

storm rotation and heavy rainfall and also to speculate

on the potential utility of this analysis and forecast

system in providing quantitative precipitation nowcasts

to drive hydrologic models.

A brief overview of the 31May 2013 tornado and flash

flood event in Oklahoma is provided in section 2, fol-

lowed by the experiment design of the WoF-type data

assimilation and forecast system in section 3. The filter

performance is discussed in section 4. Section 5 assesses

the qualitative and quantitative results of the analyses

and forecasts of severe weather associated with low-

level rotation and precipitation forecasts. A final dis-

cussion is found in section 6.

2. Overview of the 31 May–1 June 2013 tornado
and flash flood event over central Oklahoma

The 31 May–1 June 2013 tornado and flash flood over

central Oklahoma was a unique severe weather event

that not only produced one of the widest tornadoes on

record but also the deadliest flash flood in the NWS

Norman forecast area since 1934 (NWS WFO Norman

2015). An overview of the environmental conditions and

severe weather event is provided by NOAA (2014),

Wurman et al. (2014), Snyder and Bluestein (2014), and

Bluestein et al. (2015). In the late afternoon hours

(around 2130 UTC), a cluster of storms formed along a

cold front/dryline in west-central Oklahoma and an as-

sociated severe weather episode started at 2235 UTC

with an [enhanced Fujita (EF) scale] EF0 tornado in

Kingfisher County (Figs. 1a–c; see Fig. 1g for county

identification). Multiple tornadoes occurred on this day

but the most intense and longest lived of all was the ‘‘El

Reno tornado’’ that began southwest of El Reno, at

around 2303 UTC and ended at around 2344 UTC after

carving a damage path approximately 25.7km long and

4.2kmwide (Fig. 1g). This tornado was rated anEF3, and

it injured 26 and killed 8 people, including several veteran

storm chasers (Wurman et al. 2014). There were a total of

19 tornadoes over Oklahoma during the afternoon and

evening hours on that day, 12 of which occurred in the

NWSNorman Forecast area (NWSWFONorman 2015).

Although the storm cell that spawned the El Reno

tornado moved slowly eastward into eastern Oklahoma

after 0000 UTC on 1 June, a sequence of new convective

cells formed near the original initiation point and tracked

eastward over the same area. Thus, this back-building

storm system brought heavy rainfall to the Oklahoma

City, Oklahoma (OKC), metropolitan area (Figs. 1d–f

and 1h), resulting in significant flash flooding during the

evening of 31May and the early morning of 1 June. In all,

13 people were killed by flash floods, including 12 people

in OKC, making this event the deadliest flash flood event

in OKC history. There were about 23 high-water rescues

and at least 100000 homes and businesses lost power

during the long-lived storm system, with the first flooding

reported at 0100 UTC (NWS WFO Norman 2015). Sev-

eral operational Weather Surveillance Radar-1988 Dopp-

ler (WSR-88D) radars recorded the life cycle of this severe

weather event. The observations from these radars are

assimilated continuously at 5-min intervals into the storm-

scale ensemble to assess the capability of this prediction

system to forecast the low-level rotation and intense rain-

fall associated with the storms.

3. Experimental design

a. Multiscale WRF ensemble system

The configuration of the ensemble data assimilation

and forecast system is very similar to that used byYussouf

et al. (2015) and is based on the Advanced Research

version of the Weather Research and Forecasting (ARW

version 3.4.1; Skamarock et al. 2008) Model. A storm-

scale domain with 3-km horizontal grid spacing is nested

within a 15-km coarse-resolution grid (Fig. 2a) and covers

Oklahoma and parts of surrounding (Fig. 2b) states.

There are 51 vertical grid levels on both domains that

extend from the surface to 10 hPa at the top. The en-

semble is initialized at 0000 UTC 31 May 2013 with a

36-member multiphysics configuration using the analyses

from National Centers for Environmental Prediction’s

(NCEP) Global Ensemble Forecast System (GEFS; Toth

et al. 2004; Wei et al. 2008). The different combinations of

physics schemes among the ensemble members are the

same as in Table 2 of Yussouf et al. (2015).

The ensemble adjustment Kalman filter (EAKF;

Anderson 2001) from the Kodiak release branch (revi-

sion 5038) of the Data Assimilation Research Testbed

JUNE 2016 YUS SOUF ET AL . 959

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 07:56 PM UTC



software system (DART; Anderson and Collins 2007;

Anderson et al. 2009) is used as the data assimilation tool.

DART is a community toolkit maintained by the Data

Assimilation Research Section (DAReS) at the National

Center for Atmospheric Research (NCAR; available on-

line at http://www.image.ucar.edu/DAReS/DART/).

b. Mesoscale 1-h DART ensemble data assimilation
and forecast system

The data sources for mesoscale observation assimila-

tion include METARs, mesonet observations, marine

reports, rawinsondes, and aircraft and satellite-derived

winds, all of which are available from the NOAA Mete-

orological Assimilation Data Ingest System (MADIS).

The altimeter setting, temperature, dewpoint, and hori-

zontal wind components are assimilated into the ensem-

bles every 1h from 0100UTC 31May to 1100UTC 1 June

2013 (Fig. 3a) to create the mesoscale background fields.

Both 15-kmmesoscale and 3-km storm-scale grids are run

simultaneously in a one-way nested setup for the storm-

scale grid. The mesoscale ensemble provides the boundary

conditions for the nested storm-scale ensemble. Additional

FIG. 1. Composite reflectivity (dBZ, from the NSSL NMQ system) at (a) 2100, (b) 2200, and (c) 2300 UTC 31 May 2013, and (d) 0000,

(e) 0100, and (f) 0200UTC 1 Jun 2013 over the region of interest. (g) El Reno tornado path and location of counties (in blue) and cities (in

green) of interest, and (h) observed precipitation (in mm) over central OK valid from 0700 LT 31May to 0700 LT 1 Jun fromNCEP stage

IV 24-h accumulated precipitation analysis.
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details of the hourly updated mesoscale data assimilation

system can be found in Yussouf et al. (2015).

c. DART storm-scale continuous 5-min data
assimilation and forecast system

Radar observations are assimilated into the 3-km

storm-scale ensemble starting at 2100 UTC 31 May

2013, the time when discontinuous lines of supercells

start to initiate along the cold front/dryline over west-

central Oklahoma. The 2100 UTC 31 May storm-scale

model output from the hourly updated system is used as

the background (prior) to assimilate radar, mesonet,

METAR, radiosonde, and aircraft observations only on

the storm-scale domain every 5min for a 7-h period out

FIG. 2. (a) The multiscale domain with a 15-km horizontal grid-spacing mesoscale domain

covering the continental United States, and the nested 3-km storm-scale domain centered over

OK. (b) The storm-scale domain enlarged, withWSR-88D locations (green dots), and theNWS

damage swath (in red) from the El Reno tornado (EF3).
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to 0400 UTC the next day (Fig. 3b). The hourly updated

mesoscale domain is used to provide the boundary

conditions for the storm-scale 5-min update system.

Reflectivity and radial velocity observations from four

operational WSR-88Ds located in Oklahoma at Vance

Air Force Base (KVNX), Twin Lakes (KTLX), Tulsa

(KINX), and Frederick (KFDR) are assimilated (Fig. 2b),

in addition to the other conventional observations. These

data consist of the level II radar observations, obtained

from theNational Centers for Environmental Information

(NCEI) comprising 14 scan angles [volume coverage pat-

tern (VCP) 12 mode] and completing each full volume

scan in approximately 4.5min. The details of observation

quality control and preprocessing can be found in Yussouf

et al. (2015). The observation-error standard deviations

are assumed to be 5dBZ and 2ms21 for reflectivity and

Doppler velocity, respectively.

The model state variables included in the state vector

for the DART EAKF scheme to be updated include the

perturbation surface pressure of dry air, perturbation

geopotential, perturbation potential temperature, three

wind components, potential temperature tendency due

to microphysics, water vapor, and all available hydro-

meteor fields from the semi-double-moment Thompson

microphysics scheme. The model-diagnosed total sur-

face pressure, reflectivity, fall-weighted velocity, 10-m u

and y wind components, 2-m temperature, and water

vapor also are included in the state vector. The radial

velocity forward operator interpolates the fall-weighted

velocity directly from the state vector to account for the

terminal fall speed of hydrometeors [cf. Eq. (2) of Aksoy

et al. (2009)]. The covariance localization for the radar

observations is set to have a half-radius in the horizontal

(vertical) of 9 km (3km), as well as 180 km (3km) for

conventional and 60km (3km) for mesonet observa-

tions. During each assimilation cycle, temporally and

spatially varying adaptive inflation (Anderson 2009) is

applied to maintain the ensemble spread. Additional

FIG. 3. (a) The timeline of the hourly multiscale data assimilation experiments and storm-scale forecasts every

hour starting from 2200 UTC (no_radar) and (b) the timeline for the every 5-min storm-scale radar data assimi-

lation experiment and ensemble forecasts starting from 2200 UTC (radar experiment).
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spread is provided by applying the additive noise tech-

nique (Dowell and Wicker 2009) every 15min of the

assimilation cycle to each ensemble member at grid

points where the observed reflectivity value is greater

than 25dBZ.

Two sets of 6-h storm-scale ensemble forecasts are

initialized every hour starting from 2200 UTC (which is

after 60min of data assimilation) with WRF history

output files every 5min. One set of ensemble forecasts is

generated from the hourly updated 3-km ensemble

(Fig. 3a; referred to as the no_radar experiment here-

after) and the other set of ensemble forecasts are gen-

erated from the every 5-min update system (Fig. 3b;

referred to as the radar experiment hereafter). The goal

is to examine the capability of this prototype WoF sys-

tem in forecasting low- to midlevel rotation and intense

convective rainfalls.

d. Feature-based storm tracking

A feature-based storm-tracking algorithm is utilized

to identify, track, and diagnose various characteristics of

matching precipitation features from the forecasts and

observations. This algorithm was utilized in VandenBerg

et al. (2014) for tracking reflectivity features, and is im-

plemented for the current application as follows.

The first step in the algorithm is to identify precipi-

tation features, defined as contiguous regions of pre-

cipitation exceeding a specified threshold, at each 1-h

output time (hourly accumulations). In this study, a

threshold value of 6.35mm (0.25 in.) is chosen because,

when applied to the stage IV observations of pre-

cipitation (Baldwin and Mitchell 1997; Lin and Mitchell

2005) for this event, this threshold yields a coherent

feature track associated with the areas of localized ex-

treme rainfall areas that moved across central Okla-

homa during the period of the experiment. However, a

range of threshold values may be necessary to apply this

algorithm to a broader range of cases.

To determine the track of a feature once it is identified

from the hourly forecast history files, the algorithm as-

sociates the feature in subsequent future forecasts. If a

single feature at one forecast output time overlaps with,

or is adjacent to, a single feature at the next forecast

output time, it is considered part of the same track. This

is true when there is no merger or split. In addition,

once a track is identified, no part of the track is consid-

ered part of any other track. The algorithm keeps

searching through each subsequent forecast time once a

track is identified. The search continues until the end of

the track is obtained, or until the last forecast output

time is reached. If more than one future feature overlaps

with, or is adjacent to, a current feature, the algorithm

assumes that a feature split has occurred, and the largest

future feature is considered a continuation of the pres-

ent feature track, while the smaller features are con-

sidered the starting points for new tracks. Conversely, a

storm merger is assumed to occur when more than two

features at the present time overlap with, or are adjacent

to, one feature at the subsequent future forecast time. In

this scenario, the track of the largest feature continues to

the future time, and the tracks of any smaller features at

the present time are terminated.

To match the predicted (simulated) feature tracks to

the observed track, the proportion of the observed fea-

ture at its start time overlapped by a selected predicted

feature at the same time is computed. If the proportion

is $10%, then the selected predicted feature is consid-

ered a match. The 10% criteria may seem somewhat

lenient, but was chosen because larger values result in

very few matched features in the no_radar experiments,

which had trouble generating precipitation at the exact

location of the observations during the first 0–1h of the

forecasts since radar data were not assimilated. Once

matching features were identified, a series of feature

attributes were computed for each matched feature at

each forecast hour.

Although the observed feature exists for the entire

experimental period, not all of the matching predicted

features persist that long. Thus, attributes of the forecast

features are computed until the feature terminates. The

attributes calculated are 1) the overlap, or the pro-

portion of the observed feature covered by the forecast

feature; 2) the nonoverlap, or the proportion of the

observed feature not covered by any forecast feature;

3) the feature displacement, computed as the distance

between centroids of predicted and observed features,

where centroids are computed using a simple average of

the x and y grid coordinates comprising each feature;

4) the maximum feature intensity (i.e., the highest value

of hourly precipitation within the feature); and 5) the

feature size, or the number of grid points comprising

each feature.

e. Objective verification of probabilistic precipitation
forecasts

PQPFs from the ensemble prediction systems are

verified using fractions skill scores (FSSs; Roberts 2005;

Roberts and Lean 2008) and the area under the relative

operating characteristic (ROC) curve (AUC; Mason

1982), applied over a range of rainfall thresholds, fore-

cast hours, and forecast lengths. Both FSS and AUC

have a range from 0 to 1, with a perfect skill score of 1

and a score of 0 meaning zero skill. While the FSS is a

measure of the spatial skill of precipitation forecasts, the

AUCmeasures the ability of the forecasts to distinguish

between events and nonevents (or resolution). The FSS
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andAUC are calculated using a neighborhood approach

(Duc et al. 2013; Schwartz et al. 2010, 2014, 2015; Snook

et al. 2015) with a 12-km neighborhood radius. The

neighborhood approach, FSS, and AUC calculations

used in this study follow the method in Schwartz et al.

(2010). The neighborhoodmethod uses Eqs. (1), (3), and

(4), and the FSS uses Eqs. (6)–(8) in Schwartz et al.

(2010). The FSS and AUC are verified against NCEP’s

hourly stage IV multisensor rainfall estimates. To get

the observations and the ensemble forecasts on a com-

mon grid for verification, the 3-km grid-spacing ensem-

ble rainfall forecasts are remapped onto the ;4.7-km

stage IV grids using a neighbor-budget interpolation

(e.g., Accadia et al. 2003). The regridded ensemble data

are used for verification.

4. Filter performance

To evaluate the overall filter performance during the

7-h-long radar data assimilation period from the 3-km

storm-scale radar experiment, a set of observation-space

statistics are generated, as in Yussouf et al. (2015).

Specifically, mean innovation (observation 2 model),

root-mean-square innovation (rmsi), total ensemble

spread (standard deviation), and consistency ratio (from

prior/background) are calculated for the assimilated

reflectivity and radial velocity observations (Fig. 4) from

the 5-min bins (Dowell et al. 2004; Dowell and Wicker

2009; Yussouf et al. 2013b, 2015).

The improvement in mean innovation for reflectivity

is largest during the initial spinup of the storm in the

ensemble. The mean innovation starts with a high value

of 6 dBZ and decreases to 1 dBZ during the early

;45min and remains within the range of 0.5–1.0 dBZ for

the remaining assimilation period (Fig. 4a). The mean

innovation is a measure of the forecasts/analyses bias

(0 means no bias) and therefore indicates that the model

underpredicts reflectivity during the assimilation period.

For radial velocity, the mean innovation (Fig. 4b) is

close to 0 with values that vary between 0 and20.5m s21

for the entire assimilation period. The rmsi, which

is a measure of the overall fit of the observations to

the forecasts/analyses, starts with a higher value of

9–11.5 dBZ for reflectivity but the error decreases with

FIG. 4. Observation-space diagnostic statistics of (a),(b) rmsi, total ensemble spread, and mean innovations; (c),(d) consistency ratio;

and (e),(f) number of observations assimilated for the assimilated reflectivity (dBZ) and Doppler velocity (m s21) observations, re-

spectively, from the four radars during the 7-h every 5-min radar storm-scale data assimilation period. The reflectivity statistics are

computed only where the assimilated observed reflectivity is greater than 10 dBZ. The sawtooth patterns are due to the plotted forecast

and analysis statistics.
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subsequent assimilation cycles during the first 1 h of data

assimilation and becomes fairly stable (Fig. 4a). For

radial velocity observations (Fig. 4b), the rmsi slightly

increases after the initial ;45min and decreases again

during the later part of the assimilation period but,

overall, remains stable for the entire assimilation pe-

riod. For both observation types, the total spread and

the rmsi are of comparable magnitude, indicating that

the ensemble spread is representative of the forecast

error for the 5-min time scale of the storm-scale NWP

system.

The consistency ratio for reflectivity is smaller in early

assimilation cycles, but increases with time and remains

within the range of 1.0–1.2 (Fig. 4c). A consistency ratio

of ;1.0 indicates that the prior ensemble variance is a

good approximation of the forecast error variance for

the assumed observation error. The consistency ratio for

radial velocity observations starts with initial values of

around 0.6, increasing rather quickly with subsequent

assimilation cycles to values within a range of 0.8–1.2

(Fig. 4d). Importantly, the filter shows no sign of di-

vergence during the 7-h-long continuous period of 5-min

assimilation, indicating the robustness of the data as-

similation system. The smaller number of observations

(Figs. 4e,f) during the initial ;1 h (2100–2200 UTC) of

the assimilation period is due to the smaller number of

storm echoes (Figs. 1a,b) from the rapid initiation of the

El Reno storm during that time period. The overall

observation-space diagnostics (Fig. 4) suggest that the

ensemble data assimilation system is fairly reasonable

and stable.

5. Results and discussion

a. Ensemble probabilistic analyses and forecasts of
reflectivity

A series of 1-, 2-, 3-, and 6-h ensemble probabilistic

forecasts of reflectivity (greater than 40dBZ at 2 km

MSL) from the radar experiments are compared against

the observed reflectivity obtained from the National

Mosaic and Multi-Sensor QPE (NMQ) 3D radar re-

flectivity mosaic (Zhang et al. 2011) system (Fig. 5). The

1-km grid-spacing NMQ gridded reflectivity observa-

tions are thinned to 3-km grid spacing to match the

storm-scale WRF grid. The results from the ensemble

analyses reveal that the assimilation system is able to

associate 100% probabilities with the dominant ob-

served storms as early as only after 60 min of radar data

assimilation at 2200UTC (Fig. 5a). The analyses at latter

times (Figs. 5f,k) also demonstrate the ability of the

system to place the main supercells in the model at ap-

proximately the correct locations. The 1- and 2-h

ensemble forecasts generate high ensemble probabilities

that correspond to the main reflectivity core reasonably

well but with a small northeastward displacement error.

The 3-h forecast probability values are comparatively

lower than those from the earlier forecast hours with

implied storm position errors farther north-northeast.

This is due to the radar data assimilation placing the

storms in the same location initially and then having the

individual storms diverge as forecast lead time in-

creases. The probabilities from the 6-h forecast clearly

indicate that the forecast storms tend to move faster to

the north-northeast than do the observed storms. This

is a very common problem with storm-scale forecasts

(Snook et al. 2015; Yussouf et al. 2015) and may be due

to the generation of a cold pool that is too intense,

which is likely associated with uncertainties related to

the assimilation of reflectivity (Dowell et al. 2011; Yussouf

et al. 2013b, 2015).

b. Ensemble probabilistic forecasts of low- and
midlevel rotation of the El Reno tornadic supercell
storm

The ability of the 5-min-update radar experiment to

reproduce low- and midlevel rotations associated with

the El Reno supercell thunderstorm are evaluated using

the ensemble probabilistic forecasts initialized from the

storm-scale analyses every 30 min during the 1-h period

preceding tornadogenesis (Fig. 6). The forecast proba-

bility swath of vertical vorticity greater than 0.003 s21 at

1 km AGL is used to represent low-level rotation, while

the forecast probability swath of 2–5-km updraft helicity

(UH; Kain et al. 2008; Clark et al. 2012, 2013) greater

than 100m2 s22 is used to represent midlevel rotation.

At a given time, the forecast UH and vertical vorticity

from each ensemble member at each grid point is com-

pared with the specified threshold value, and the prob-

ability values are set to the fraction of ensemble

members exceeding the threshold (Stensrud and Gao

2010; Dawson et al. 2012; Stensrud et al. 2013; Yussouf

et al. 2013a,b, 2015). Figures 6a and 6d show 105-min

forecasts initialized at 2200 UTC, which is 63min be-

fore tornadogenesis. Figures 6c and 6f show 45-min

forecasts initialized at 2300 UTC, which is just

3min before tornadogenesis. Therefore, the forecast

rotation swaths cover the entire duration of the El Reno

tornado. The NWS-surveyed tornado damage path

and the Warning Decision Support System–Integrated

Information (WDSS-II; Lakshmanan et al. 2007) gen-

erated 0–2- and 2–5-km mesocyclone circulations

(Miller et al. 2013) are used to compare with the model-

generated vorticity swaths. Note that while these fields

derived from observations are useful for validating

model forecasts of severe storms, caution must be
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FIG. 5. The ensemble probability of reflectivity greater than 40 dBZ (colors, 10% increment) at 2 kmMSL from the

radar experiment at the (a),(f),(k) analyses time and then for the every (b),(g),(l) 1-, (c),(h),(m) 2-, (d),(i),(n) 3-, and

(e),(j),(o) 6-h forecasts. The thick black contour is the observed 40-dBZ reflectivity contour. The portion of the

domain shown here is over central OK.
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exercised when doing so because the observed and

predicted quantities are not the same and may not al-

ways correlate strongly.

In general, the forecasts of low-level vorticity and

midlevel UH paint a consistent picture of the forecast

scenario (Fig. 6). The 105-min forecast probability of

vorticity (Fig. 6a) andUH(Fig. 6d) initialized at 2200UTC

indicates mesocyclone probabilities with maximum

values of 65%, and the swath overlaps the radar-

generated circulation locations. The midlevel rotation

forecasts show higher-probability values with a wider

swath than is found from the low-level rotation, as one

would expect. The maximum forecast probabilities are

increased to 85% for the low-level vorticity (Fig. 6b) and

100% for midlevel UH (Fig. 6e) from the 2230 UTC

analyses, which is after 30 min of continuous data as-

similation. The swaths also are enhanced along the

radar-observed rotation. The forecast probabilities in

this area are consistently enhanced and increased with

a continuous update cycle. The forecast rotation prob-

abilities from 2300 UTC analyses, the time when the

El Reno tornado is about to occur, reach values as high

as 100% (Figs. 6c,f). Compared to the forecasts from the

earlier lead times, the probabilities along the mesocyclone

FIG. 6. Raw model gridpoint-based ensemble probability of (a)–(c) vorticity forecasts exceeding a threshold of

0.003 s21 at 1 km AGL, and (d)–(f) 2–5-km UH exceeding a threshold of 100m2 s22 from every 30-min radar

analyses for the El Reno supercell. Overlaid in each panel is the NWS-observed tornado damage track (black

outline) and theWDSS-II-generated radar-derived low-level (0–2 kmAGL) in (a)–(c) andmidlevel (2–5 kmAGL)

in (d)–(f) mesocyclone exceeding a threshold of 0.006 s21 (black asterisk) during the indicated forecast periods.
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track from the 2300 UTC forecast are higher and aligned

better with the El Reno radar-derived rotations and NWS

tornado damage tracks.

c. Quantitative precipitation forecasts

Numerical prediction of flash floods with long lead

time may be significantly enhanced if NWP models can

accurately predict the amount, location, and timing of

heavy rainfall. Thus to evaluate the ability of the en-

semble system to forecast accurate rainfall amounts,

0–1-, 0–3-, and 0–6-h ensemble-mean accumulated pre-

cipitation forecasts from the no_radar and radar experi-

ments (initialized from 2300 and 0000 UTC storm-scale

analyses) are presented here. As mentioned earlier, the

NWS WFO in Norman received the first flooding re-

port for this event at 0100 UTC. For this study, the

focus is on Canadian and Oklahoma Counties (see

Fig. 7a), where the loss of life and property was greatest

during this event.

During the 2300–0000 UTC period, the stage IV an-

alyses indicated heavy rainfall centered on west-central

Canadian County, with a peak magnitude of ;61mm

(Fig. 7b). The 0–1-h ensemble-mean forecast from the

radar experiment shows good agreement with these

observations, but with a somewhat broader swath of

heavy rainfall, a slight eastward displacement toward

the eastern part of the county, and a peak value of

;56mm (Fig. 7c). By comparison, the corresponding

forecast from the no_radar experiment produces a much

more diffuse rainfall pattern with clear northeastward

displacement and a peak value of only;35mm (Fig. 7a).

These results are consistent with those of Sun et al.

FIG. 7. Ensemble mean 1-, 3-, and 6-h accumulated precipitation forecasts initialized at 2300 UTC from the (a),(d),(g) no_radar and

(c),(f),(i) radar experiments, aswell as (b),(e),(h)NCEP stage IV accumulated precipitation analyses. The portion of the domain shown here

is over central OK. The locations of Oklahoma and Canadian Counties are shown in (a).
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(2014), indicating that the continuous 5-min radar data

assimilation helps with the initial model spinup issue.

In terms of the perceived relative skill of forecasts

from the radar and no_radar experiments, the 0–3-h

rainfall forecasts from the 2300 UTC initialization time

yield similar results. Heavy rainfall covers much of Ca-

nadian andOklahomaCounties in the radar experiment,

in reasonably good agreement with observations (cf.

Figs. 7e,f), while the heavier rainfall in the no_radar

experiment is displaced to the north and east (cf.

Figs. 7d–f). Both experimental forecasts underestimate

the peak value of the observed very heavy rainfall dur-

ing this period (;134mm), withmaximum values of;98

and ;59mm coming from the radar and no_radar ex-

periments, respectively.

Visual inspection of the 0–6- (Fig. 7g) and 0–3-h

(Fig. 7d) accumulations from the no_radar experiment

indicates that heavy rainfall was generated in this ex-

periment during the 3–6-h period, suggesting that, after

the first few hours into the forecast, convection in the

no_radar ensemble reaches an intensity that is compa-

rable to storms that were observed on this day. How-

ever, the simulated activity remains displaced to the

northeast relative to observations (cf. Figs. 7g,h). A

similar comparison of the 0–3- and 0–6-h rainfall pat-

terns from the radar experiment (Figs. 7i,f, respectively)

reveals that the 3–6-h forecast yielded the heaviest rain

to the northeast of Canadian and Oklahoma Counties in

this experiment as well. Yet, observations show that very

heavy rainfall continued in these counties during this

time period (cf. Figs. 7h,e). Thus, it appears that the

positive impact of radar data assimilation decreases

rapidly after the 0–3-h forecast period, as suggested by

Kain et al. (2010) and others.

One of the challenges of evaluating ensemble pre-

diction systems for this type of event is to find concise,

but revealing ways of diagnosing the contributions from

different ensemble members. The results shown above

indicate that the ensemble-mean precipitation field is

potentially useful in this case, but this field can diminish

the sharpness of the coverage, amplitude, and configu-

ration of fields like accumulated precipitation. One way

of restoring the amplitude of the precipitation field is

to use the probability-matched mean (Ebert 2001), but

this representation does little to reveal the error

characteristics of individual ensemble members and

how these characteristics translate into errors in the

field of mean values. Here, we use the ‘‘feature-based

storm tracking’’ method (described in section 3d) in-

troduced by VandenBerg et al. (2014), which is con-

ceptually similar to Carley et al. (2011), to track and

characterize dominant precipitation features in the en-

semble members, revealing important feature-specific

error characteristics related to amplitude, displacement,

movement, and coverage.

The feature-specific results for the radar experiment

at 2300 UTC initialization indicate that the dominant

precipitation feature in most of the ensemble members

has an eastward displacement error by the 1-h time, and

the mean displacement in this direction increases with

time through the first 3 h of the ensemble forecast

(Figs. 8a,c). During the 3–6-h forecast period, the mag-

nitude of the displacement errors continues to grow,

but interpretation of output from the object-tracking

algorithm becomes more ambiguous, likely due to dif-

ferences in the splitting, merging, decay, etc. of the

features in the different datasets. These characteristics

are corroborated by measures of the degree of overlap

of predicted and observed features, as well as their in-

dividual sizes (Figs. 8b,e, respectively). Each member

has a high degree of overlap with observations 1 h into

the forecast, with a slow drop-off through 2h, and a

more rapid decline thereafter (Fig. 8b). In terms of peak

intensity, observations fall squarely within the envelope

of predicted values through the 2-h time period, but in

general, the predicted features appear to decay after

that time while observed precipitation rates continue to

increase (Fig. 8d). The dominant forecast features are

uniformly larger than the matching observed features at

the 1-h forecast time, but the former tend to shrink after

2–3 h, with more than half of them completely dissipat-

ing by hour 5, in contrast to observations (Fig. 8e). The

picture that emerges from these feature-specific results

is much more nuanced than, but nonetheless consistent

with, the QPF fields presented in Fig. 7.

Application of the object-tracking algorithm to the no_

radar output is more challenging because, in the absence

of radar-data assimilation, less than half of the ensemble

members generate features that meet the criteria for di-

rect correspondence (matching) with the dominant ob-

served precipitation feature (Fig. 9). For those members

whose output contains matching features, a relatively

large northeastward displacement is evident even after

the first hour (Figs. 9a,c). A few members produce

matching objects that overlap significantly with the

dominant observed feature, but the degree of overlap

decreases sharply with time through the 3-h forecast

(Fig. 9b). In terms of peak intensity, the matching objects

bracket the observations quite well during the first hour,

but the simulated storms fail to match the modest in-

crease in observed peak rainfall thereafter (Fig. 9d). The

matching objects are generally somewhat larger than the

dominant observed feature at the 1-h time, but they come

into better agreement at later times (Fig. 9e).

Focusing now on the 0000 UTC initialization time

and corresponding observations (Fig. 10), one can see
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FIG. 8. (a) The observed precipitation object track (6.35-mm criteria) over central OK

starting at 2300 UTC 31May 2013 is indicated by the thick black line. Larger circles denote the

centroid locations of the objects comprising the observed track, where the colors denote the

specific forecast hour as indicated by the legend at the top left. The gray lines and smaller circles

show the same thing, but they are formatching forecast object tracks from the radar experiment

initialized at 2300 UTC. (b) Black lines indicate the proportion of the observed object over-

lapped by each radar ensemble member at each forecast hour. The red line indicates the

proportion of the observed object not overlapped by any of the forecast objects.

(c) Displacement error at each forecast hour for matching forecast objects in each radar en-

semblemember. (d) As in (c), but formaximumobject intensity, and the thick red line is for the

observed object track. (e) As in (d), but for object size.
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that the heaviest rain fell in a band from west-central

Canadian County to east-central Oklahoma County

during the 0000–0100 UTC period (Fig. 10b). The

ensemble-mean QPF from the radar experiment re-

produces this rainfall pattern quite well (cf. Figs. 10b,c),

but appears to generate too much rainfall near the center

of this band and perhaps not enough on the eastern and

western ends of it. However, these errors are minimal

compared to those from the corresponding prediction

from the no_radar experiment, which significantly

underpredicts the maximum rainfall amount in this first

hour and suffers a downstream (relative to the midlevel

flow) displacement error (cf. Figs. 10a–c).

For the longer accumulation periods, the no_radar

experiment again produces heavy rainfall (Figs. 10d,g)

although the heavier amounts remain displaced to the

north and east by a county or so (cf. Figs. 10d,e and 10g,h).

The maximum accumulation in the no_radar experi-

ment almost doubles from the 0–3- to the 0–6-h period

(cf. Figs. 10d,g), suggesting that the extreme event is

FIG. 9. As in Fig. 8, but for the no_radar experiment.
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displaced in both time and space with this prediction

system. Interestingly, the 0–6-h heavy-rainfall feature in

this experiment has a configuration and shape that

closely resemble corresponding observations (cf. Figs.

10g,h). Meanwhile, the maximum ensemble-mean ac-

cumulated rainfall from the radar experiment remains

anchored where it emerged during the first forecast hour

(cf. Figs. 10c,d,i), again suggesting that the added value

associated with radar-data assimilation declines rapidly

with model integration time.

The feature-tracking diagnostics in the radar experi-

ment reveal that the tracks of the dominant feature in

each of the ensemble members match the observations

quite well through 2h but, generally, diverge significantly

thereafter (Figs. 11a,c)—likewise with the sizes in each

realization of this feature (Fig. 11e). The degrees of

overlap and themaximum rainfall rates both drop sharply

after the first hour of the forecast (Figs. 11b,d). In con-

trast, in the no_radar experiment, the displacement errors

are relatively large even after 1h and the degree of spatial

overlap with the observed feature is relatively small (cf.

Figs. 12a–c to Figs. 11a–c). On the other hand, the peak

intensity of the ensemble members in the no_radar ex-

periment tends to lag the observations (the spinup issue),

but the envelope of maximum-intensity solutions is quite

consistent with a good probabilistic representation of

the observations during the 3–6-h period (Fig. 12d), and

the envelope of feature-size solutions contains the ob-

served feature size during most of the 0–6-h period

(Fig. 12e). In general, comparing Figs. 11 and 12, it is

quite clear that the assimilation of radar data yields an

initial condition that is characterized by relatively much

FIG. 10. Ensemble mean 1-, 3-, and 6-h accumulated precipitation forecasts initialized at 0000 UTC from the (a),(d),(g) no_radar and

(c),(f),(i) radar experiments, as well as (b),(e),(h)NCEP stage IV accumulated precipitation analyses during the same period. The portion of

the domain shown here is over central OK.
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sharper ensemble definition of the deep-convective storm

that dominated this event, but the added value of this

convective-scale definition is not necessarily carried much

beyond the 0–3-h forecast time.

d. Probabilistic quantitative precipitation forecasts

The ensemble-based probability of 0–3- and 3–6-h accu-

mulated rainfall (greater than 25mm) are compared with

the observed stage IV 25-mm rainfall amounts from the

forecasts initialized during the 2300 and 0000UTC analyses

(Figs. 13 and 14, respectively). The 0–3-h PQPF from the

radar experiment (Figs. 13b and 14b) is able to associate

100% probabilities with the observed location reasonably

well. The 0–3-h PQPF from the no_radar experiment gen-

erates comparatively lower probabilities of the dominant

precipitation core, and its probability field is displaced to the

north relative to the observations (Figs. 13a and 14a). Not

surprisingly, the 3–6-h probability fields are lower in mag-

nitude than the 0–3-h fields for both experiments, and the

northward displacement errors are also more pronounced.

FIG. 11. As in Fig. 8, but for forecasts initialized at 0000 UTC 1 Jun 2013.
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Overall, the results indicate that the radar experiment

corresponds to the stage IV analyses much more closely

than does the no_radar experiment during the 0–3-h fore-

cast period. The spatial uncertainty is greatly reduced by

the explicit initialization of storms using radar data in this

experiment. The implications of this impact are significant

because flash flood forecasting can depend very heavily on

the accurate prediction of the specific location of the heavy

rainfall. Heavy rainfall is more likely to result in flash

flooding when it occurs in a flash-flood-prone area or basin.

Small errors in predicting the location of heavy pre-

cipitation can lead to much bigger errors in predictions

from hydrologic models and/or human forecasters. There-

fore, the rapid-update-cycle ensemble NWP system used

here, including the assimilation of radar data, has the po-

tential to improve forecasts of flash flood events sub-

stantially compared to current operational forecast

systems. This assessment is corroborated by applying

FIG. 12. As in Fig. 9, but for forecasts initialized at 0000 UTC 1 Jun 2013 from the no_radar

experiment.
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objective verification metrics to the probabilistic fore-

casts, focusing on the domain shown in Figs. 13 and 14.

1) FRACTIONS SKILL SCORES

The FSSs from the radar experiment are considerably

higher than those from the no_radar experiment for

both 15 and 30mmh21 threshold values during the ini-

tial 0–3-h forecast period. The differences in skill be-

tween the two experiments are as high as 0.82 (Fig. 15c)

for the initial 1-h forecast, but the differences decrease

as forecast lead time increases (Fig. 15). The FSSs from

both experiments are lower for the higher 30mmh21

threshold value compared to the 15mmh21 threshold,

indicating that accurate prediction of higher precipita-

tion amounts is more challenging.

This challenge is revealed in more detail by examining

the FSSs as a function of increasing precipitation threshold

for the 0–3- and 3–6-h periods (Fig. 16). The 0–3-h FSSs

from the radar experiment are consistently higher than

0.80 for the lowest (5mm) threshold during the initial 0–

3-h period (Figs. 16a–c), decreasing to lower values for

higher thresholds. The 3–6-h FSSs are much lower at all

thresholds. The decrease in FSS with increasing threshold

value indicates, once again, that the ensemble prediction

system tends to be less skillful at predicting the specific

location of intense rainfall features. This tendency is likely

due to the fact that higher precipitation thresholds high-

light smaller ‘‘features,’’ which tends to reduce the degree

of overlap between the observed and predicted features

for given errors in displacement and amplitude (see, e.g.,

Baldwin and Kain 2006).

2) AREA UNDER THE RELATIVE OPERATING

CHARACTERISTICS CURVE

Consistent with the FSSs, the forecasts initialized

from 2300, 0000, and 0100 UTC analyses as a function of

forecast hours (Fig. 17) and increasing rainfall thresh-

olds (Fig. 18) indicate that theROC areas from the radar

experiment are generally higher compared to the no_

radar experiment. ROC areas greater than 0.5 indicate

successful discriminating ability (Schwartz et al. 2015

and references therein), with a value of 1.0 indicating a

FIG. 13. The ensemble probability of rainfall greater than 25mm (colors, 5% increment)

from 0–3- and 3–6-h accumulated precipitation forecasts initialized at 2300 UTC. The thick

black contour is the stage IV 25-mm precipitation contour. The portion of the domain shown

here is over central OK.
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perfect score. Both experiments yield relatively high

ROC areas early in the forecast (Fig. 17). The ROC

areas from the radar experiment start with values ap-

proaching 1.0 (Figs. 17c,f) and generally remain greater

than ;0.5 at all forecast lead times for both 15 and

30mmh21 thresholds, indicating skillful discriminating

ability. The ROC areas from the no_radar experiment

are greater than ;0.5 earlier in the forecasts hours but

the value drops to less than 0.5 at later times. The 0–3-h

rainfall accumulations from the radar experiment dem-

onstrate high ROC areas for all rainfall thresholds with

values above 0.9 (Figs. 18a,b), indicating skillful dis-

criminating ability of both lighter and heavier pre-

cipitations amounts. The ROC areas are smaller for the

later 3–6-h accumulation period (Figs. 18d–f). The dif-

ferences in ROC areas from the two experiments are

very small for heavier rainfall amounts.

6. Summary and conclusions

NOAA’s WoF program is designed to provide NWS

forecasters with the probabilistic guidance needed to

substantially improve short-term forecasts and warnings

for convective weather threats such as tornadoes, large

hail, strong winds, and flash floods. This study focuses on

an event with two distinct threats: tornado and heavy

convective rainfall, which is often a precursor to flash

flooding. It examines the 31 May 2013 severe weather

event over central Oklahoma, in which 22 people were

killed—8 by a tornado and 14 by flash floods associated

with the same storm complex.

Retrospective short-term (0–6h) probabilistic en-

semble forecasts of this event are generated. Specifi-

cally, two sets of 0–6-h ensemble-forecast experiments

are conducted at storm scale. The first set is initialized

from the hourly updated prediction system that assimi-

lates routinely available observations from METARs,

marine sources, mesonet reports, ACARS, and radio-

sonde and satellite-derived winds. The other set is ini-

tialized from a system that is updated every 5 min and

assimilates both WSR-88D radar data and the set of

routinely available observations described above. The

goal is to quantify the benefits of assimilating conven-

tional and radar observations in initializing short-term

rainfall forecasts, while validating the forecast system by

comparing predictions of low- and midlevel storm ro-

tations to observed rotation tracks and the path of a

large tornado that hit El Reno, Oklahoma.

FIG. 14. As in Fig. 13, but initialized at 0000 UTC.
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Observation-space diagnostic statistics reveal that the

ensembleKalman filter shows no sign of forecast divergence

during the 7-h assimilation period, indicating robustness of

the data assimilation system. For both radial velocity and

reflectivity observations, the rmsi and ensemble spread are

of comparablemagnitude, indicating that the 5-min forecast

error is representative of the ensemble spread.

The 0–6-h probabilistic forecasts of reflectivity greater

than 40 dBZ from the radar experiment show that the

ensemble is successful at associating high-reflectivity

probabilities with the dominant observed storms in the

analyses. The reflectivity probability fields have high

amplitude and are well aligned with the locations of the

observed storms early in the forecast period, but the

FIG. 15. FSS as a function of forecast hour for (a)–(c) 15 and (d)–(f) 30mmh21 rainfall threshold values from the

ensemble forecasts initialized at 2300, 0000, and 0100 UTC. The blue line is from the radar experiment, and the red

line is from the no_radar experiment.

JUNE 2016 YUS SOUF ET AL . 977

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 07:56 PM UTC



probability values gradually decrease as the forecast

hour increases, and the probability field is clearly dis-

placed to the north and east relative to the observa-

tions by the end of the period. The biases associated

with the motion of simulated storms are likely due to

the model error, but this is the subject of ongoing

investigation.

The radar experiment was also successful at initializ-

ing the supercell responsible for the El Reno tornado

and predicting a high probability of strong low-level

rotation along a path that corresponded reasonably well

to the observed rotation tracks associated with this

storm and the associated deadly tornado. Overall, there

is a consistent and gradual increase in the probability of

FIG. 16. FSS as a function of precipitation threshold (mm) for 0–3- and 3–6-h accumulated precipitation ensemble

forecasts initialized from (a),(d) 2300, (b),(e) 0000, and (c),(f) 0100 UTC analyses. The blue line is from the radar

experiment and the red line is from the no_radar experiment.
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low-level rotation with each successively later initiali-

zation leading up to the time of tornadogenesis.

The ensemble mean QPFs from the radar experi-

ment correspond quite well to the stage IV pre-

cipitation analyses for the first 1–2 h of the forecasts. In

contrast, the no_radar experiment generates notice-

ably lower rainfall rates during the early forecast hours.

Beyond the 0–3-h forecast period, both experiments

produce heavy rainfall but they also suffer from sig-

nificant downstream (relative to the midlevel steering

flow) displacement errors for the heaviest highest

rainfall rates.

A consistent picture is painted by the probability

forecasts that the ensemble systems provide. During the

FIG. 17. AUC as a function of forecast hours for (a)–(c) 15 and (d)–(f) 30mmh21 rainfall thresholds from the

ensemble forecasts initialized at 2300, 0000, and 0100 UTC. The blue line is from the radar experiment, and the red

line is from the no_radar experiment.
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first 1–2h of each relevant forecast period, the radar

experiment generates high probabilities of heavy pre-

cipitation very close to where high rainfall rates actually

occurred. In contrast, the probability fields from the no_

radar experiment imply that there are significant model

errors in the timing and placement of heavy pre-

cipitation during this same forecast period. Both

experiments produce large areas with greater than 50%

probability of heavy precipitation during the 3–6-h pe-

riod, but the probability fields are displaced downstream

from the areas where the heaviest precipitation was

observed. These subjective assessments of the proba-

bility forecasts are corroborated using FSSs andAUC as

objective metrics.

FIG. 18. AUC as a function of precipitation thresholds (mm) for 3- and 6-h accumulated precipitation ensemble

forecasts initialized from (a),(d) 2300, (b),(e) 0000, and (c),(f) 0100 UTC. The blue line is from the radar experi-

ment, and the red line is from the no_radar experiment.
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Additional insight is provided by applying a feature-

tracking algorithm that identifies, characterizes, and

tracks precipitation features over time. This algorithm

provides important information about the representa-

tion of individual storms in the ensemble members and

how this representation is translated into the prediction

parameters of the ensemble. The results indicate that

the range of solutions in the radar experiment captures

the maximum rainfall rates of the El Reno storm re-

markably well for the first 2 h of key forecast periods.

The size of this dominant feature is generally captured

well during this forecast period too, while position/track

errors grow, but at a slow rate during this period. Be-

yond the 2-h time period, errors grow more rapidly and

the range of predicted solutions, in terms of the different

storm-feature attributes, becomes less likely to encom-

pass observed storm attributes in later forecast hours.

The higher disparity between the simulated and ob-

served storm attributes is generally true for the no_radar

experiment from the start of the forecast period.

In summary, the results presented here reveal that the

type of continuous-update-cycle storm-scale ensemble

system that is being developed for theWoF project shows

great promise for 1–2-h predictions of intense convective

rainfall. This result is particularly significant because it

suggests that this type of prediction system could be very

helpful for increasing lead times for forecasts and warn-

ings of flash floods. Specifically, aWoF-type system could

be used to initialize hydrologic models with realistic

rainfall timing, intensity, and location well before a se-

vere rainfall event occurs. In turn, these models could

provide critically important flash flood guidance for

forecasters 1–2h earlier than the current paradigm allows

because the models would be driven by heavy rainfall

forecasts rather than detection, consistent with the fun-

damental basis of the WoF initiative.

To explore the robustness of this system beyond this

single case study, experiments with multiple heavy

rainfall and flash flood events will be examined in future

studies. Needless to say, continued improvements in all

aspects of the WoF system must be made to extend the

skillful forecast lead time beyond the first 2 h. For ex-

ample, microphysical and planetary boundary layer pa-

rameterizations appear to be significant sources of error

that can severely limit the practical predictability of

storm-scale model forecasts (Houtekamer et al. 2005),

even when initial conditions are generated with fidelity

using sophisticated radar data assimilation schemes.

Designing storm-scale ensembles that better represent

typical forecast errors several hours in advance also

is crucial (Yussouf et al. 2015). Storm-scale data as-

similation is essentially a retrieval problem; most of

the state variables are severely underconstrained by the

observations (here, reflectivity and radial velocity). Ad-

ditional storm-scale observations have recently become

available from theWSR-88D radar network in the formof

dual-polarization variables. A major challenge now is to

understand how to best assimilate those dual-polarization

observations, which opens up an active area of research in

the storm-scale data assimilation community (Jung et al.

2008a,b; Posselt et al. 2015).
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